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These conditions assure us that the boundary value problem (4.87) has a
unique solution. The grid points are given by x, = a+nh, n = 0(1)N+1,
h = (b—a)/(N+1). A simple difference scheme for (4.87) is written as
Vn1—=2Yn+Yur1 = B f (Xn, yn, ¥;,) (4.88)
where the first derivative y, may be replaced by one of the expréssions
@) (vari—yn-1)/2h
i

J’;. = ' (i) (ya=ya-1)/h

(ii)) (yns1—yn)lh (4.89)
The backward and forward differencés are accurate to order 4. Therefore the
difference scheme (4.88)is of 0(#). The central difference is accurate to order
h? and the difference scheme (4.88) will be of 0(h?).

‘4.4.1 Difference schemes

We now list two difference schemes for the differential Equation (4.87).
Fourth order method

Y, = (Vns1=yn-1)/2h
y'ﬂ+l = (3}’n+1"4_]’n+}’n—1)/2h
?,'.__l = (_}’n+l'*'4}’n"3_}’n—-l)/ﬂl

=

Ta =T = 25 (Fusi=Fact)

R = |
yn—|—2.\’n+}’n+1 = T‘z' (fn+1+10fn+f —l) (490)
where 7,, = f(Xn, Vns ;n)
and fnil = f(x":tls Ynxly y;l;hl)

Sixth order method
Vo = (Ynar=yn-1)2h
Vor1 = Gyaer—4yntyni)l2h
Vet = (=Yarr+dya=3ya)[2h

Fast =By + 5 Qi)

. — h

In—t = Vn T "3‘(2fn+fu—1)

Smiis = o (1ymirt 18yn— yui)= o (3Fwsr+4fu=Foet)
Yat1/2 32 Va1 Vn— Yn-1 ] n+1 n=Jn-1

' ‘ 2
7;,_1,2 = :—7_(-—yn+.+ 18yu+ lSy.._l)—EhZ- (—fn+|v+hfn+3fn—l)



202 NUMERICAL SOLUTIONS

= ]
yn+112 = —4-h (Syﬂ+l_6y'l+yn—l)_4'%(3fn+1+8fn+fn_|)
=, 1 )
Y12 = E(_y"+l+6yn“5yn—l)+ Zl;—(fn+1+8fn+3fn—l)
A -— 1 = = 2 = =
Yn = Y.+h[7§(fn+l —fn—l)_%(ﬁWI_.fn—l) - (fn+112—fn—ll2):]

a1 =2yt Yary = 6%2 (26fa-+fari+faot +16(Farina o] (4.91)
where .
=fu = f(Xn, Yns V), st = f(Xnx1, Yntls Fns1)
Satr = f(an:el, nxt Yooe) '
Faz12 = f(Xns1j2, Fnziiz, ¥)p12)

f’:' = f(x'h Yn, j;.;)

4.4.2 Compact implicit difference schemes

These are the implicit relations between the derivatives and the function
values at the adjacent nodal points. We use either a Taylor series analysis
.or a2 Hermite polynomial interpolation to obtain the relations. We write the
difference scheme in the following form

m
2 (av yn+v+Av y,‘,’f,’_v) =0 (4.92)
ve—m
where y®) represents the kth order derivative of y(x) at xn.v. The weight-

ing factor av and Ay are determined by requiring that the method (4.92)
satisfies certain accuracy conditions.
We associate with (4.92) the difference operator L[y(x), 4] and write

"
L [¥(xn), h] = }:m[av Y (Xnav)+Av P (xn4v)] (4.93)
The largest value of p for which the relation .
| Lly(x), k] = 0(#+) | (4.94)

bolds for all sufficiently differentiable functions y(x), is the order of the
operator. For example, (4.92) and (4.93), for k = 2, m = 1, become

8-y Yn-y+8 yntay yni1+H(Ao1yy_+ Aoy + A y;s’+1) =0 (4.95)
L{y (x), A} = a~; y (xa_1)+ao y (Xa)+a1y(xn41)
+A_ Yy’ (Xn-)+A4oy” (xa)+A1y" (Xns1) (4.96)

Expanding each term on the right-hand side of (4.96) in the Taylor series
about x,and equating the coefficients of 4” yM/¥!, v = 0(1) 5 to zero, we
get
a_taptar =0
-a_;+al =0
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2
‘a_1+a|+-l-1§ (A_1+A0+Al) =0
6
—a_+a+ P—(—A_H—A,) =0
12
a1 tait3 (4.+4) =0

—a-+a+ ,2—,2 (—A-i+4) = 0 (4;97)

and
Xn—y Nast
L[y(x),H] =5i! a_y I (Xn_1=5) YO (s)ds+ ay S (Xns1—S)5 YO (s) ds
Xn Xn
Xn_y Xty
v20( sy | Gnam9? 10 (0 ds + 4 [ Gri=spy000 &)] @s®

Xn Xn

The last equation in (4.97) is automatically satisfied in view of the second
and fourth equations. We are thus left with five equations in six unknowns.
We can choose one of the unknowns arbitrary, say @, = 1, and determine
the remaining unknowns. We find

1 10
-y = 1, ap = -2, A, = Ay = - i_Z_hz’ Ao = —'l—i'hz . (499)

Substituting (4.99) into (4.98) and simplifying we obtain
1
6
Ly (x), = %0—[ (1= (2 ]) G2 =6 u| — 2y (xathu) du

N\ e (g)
- 240

where x,+hu = s and | £ | < 1. Equation (4.96) becomes
3 Chn )25 )= (374 109+ ) = =55
Neglecting the remainder (truncation) term, we get the Numerov method

© Va1 —2Vnt Y = % G 10y +Ve 1)) (4.100)

which holds good at each nodal point with an error

1
240"”‘

where Mg = max | y9(§) | .
LEI <1 .
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From (4.94), we find that the difference equation (4.100 ) is of order four.
Similarly, for the first order derivative the compact implicit scheme is
given by the Milne method

h ’ ’ ’
Yusy = Yn-y = 7 Vg1 H 47+ 50 1) (4.101)

For certain type of differential equations, it is useful to replace the deriva-
tive term y) by the linear differential operator L[y] when constructing the
compact implicit difference scheme. We have

¥ (@ et Ay (LDus) = 0 4.102)

For the linear differential operator
Lyl = p(x)y" +q(x)y’ (4.103)
and m = 1, we obtain the compact implicit difference scheme
9 (LUYDnsr +4n(LDDa+ga (LIyDn-y
= ;:T(l‘:' Ynertrd yntry yasy) (4.104)
where
43 = 6pn Py +h(5Pu-1 Gn=2Pn Gn-1) = H* qn Gn-,
gn = 4115 Puss Pret = 4h(Pus1 Groy = Gui1 Pny) — 2 Gnt1 Gny]
gn = 6pn Put1—h(5pnyy qn—2Pn qnt1) = h? gn Gy

1
ry = 3 (4,5 (2pnsy+3h Gn+1) g0 2Pnt+hgn)+ G5 (2pa- 1 — hgn-y1)]
1
e =% (9, 2pns1 +hgns1) +932Pn—hgn) + 47 (2Pn-y — 3hqn-y)]
rm=—(rad+ra)

Pn = p(xs) and gqn = q(xa).
However, if we apply the fourth order difference scheme (4.90) to (4.103),
we get the difference scheme
VYnt1 Yne1+ ¥V }’n+)‘n—1 Yn-1

= K{lsiraser+ln rat- by Paci] ‘ (4.105)
whetre .

, , : A
Yas1 = PnPn-1 Prirt g (3Gn+1 Pu Pr-1+10Gn Prit Pry—Guey P Prst)

—

h2
+Z§ (39n Gnt1 Pr_1+qn Gn_y Psy)
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- h
Yn-1 = !’nP"—1Pn+t‘*"2iP (gn+1Pn Pne1—=10Gn Pnsy Pr1— 3Gn-1 Pn Pnr1)

h?
T3 (9n Gnst Pr-17+3Gn Gny Prsy)

h
Yn == 2[Pn Pn-1 Pn+[+ ﬁ (qu+1 Pn Pn=1—Gqn-1 Pn 17n+1)

2
+§Z (qn Gns 1'7n71+qn Gt Pri)]
== (')’n+ 1 ‘|'Yn—|)

1 h
Inyy = Ti(P"Pﬂ—l'*’”é‘ qn Pn—l)

1 h
ln-l = ]_2 ])n]7'l+l"—2‘ q"l’"+l)

5, =1
n 12 Pn—1 Pas1

pa=plxn),  gn = qxs) and rn= (LD

4.4.3 Difference schemes based on cubic spline function .
We shall derive the cubic spline relations which are relevant for construc-
ting the difference schemes for the second order differential equations.

DEFINITION 4.2 A spline function of degree m with nodes at the points
x» = O(1)N+1, is a function Sa(x) with the properties:

(i) On each interval [xa_y, Xal, n = 1(1)N+1, Sa(x) isa polynomial of
degree m.
(ii) S.(x) and its first (m—1) derivatives are continuous on [a, b].

If the function S4(x) has only (m—k) continuous derivatives then & is de-
fined as the deficiency and is usually denoted by S, (m, k). The cubic spline
is a cubic polynomial of deficiency one, i.e. Ss (3, 1). We now use the defini-
tion 4.2 to find the cubic spline function approximation for the function y(x).
x€E[a, b]. We have

Sh(x) = —("——h’—")— Mo+ Q‘Zfl—-i M, (4.106)
where primes denote differentiation with respect to x and Si(xn) = M. In-
tegrating (4.106) and satisfying the interpolating conditions, Sa (Xa-1) = Ya-1
and S,(x.) = y» we obtain the cubic spline approximation function

—y)3 —_ 3 2 —_
Sa(x) = i’f—@i‘)— Mo+ i’i——g‘h-—‘) My +(Vaa— % M) Q‘-—h—ﬁ
_RB oy =X
+(yn 6 M,) A (4.107)
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The function S4(x) on the interval [x,, x,4,] is obtained with n-1 replacing
n in (4.}07). The continuity of the first derivative of S, (x) at x = xare-
quires Ss(xa—) = Sai(x,+). We have

() S (xa—) = = M,.+ M,,_ +y" Yty = 1(1)N+1

(i) S,(rurt) == B My B 21700 — 01N (4.108)

and so that the continuity of the first derivatives implies

A Mur A M A M) = - Gt =2y, n = KON @4.109)

Additional spline relations that are deduciable from (4.107) are listed as
follows:

G) m =—%(Mn+.+2Mn)+ Tt

(ii) My = % (Ma+2Mp )+ }’n+;1—}’n

(Ill) Mpyy —Mp = 'g‘ (Mn+-l+Mﬂ)

(IV) Mn+|+Mn = —z-(Mn+| “Mu)'l“ g‘(“&L_;:m (4.1]0)

The truncation error of the spline functions is obtained by putting E = e
and expanding in powers of hD. We get the following results,

() S;(xn) = Mn = y'(xu)-—m—o h‘y&) )+0(h6)

(i) S0 = Ma= 3" (xa) =5 ¥+ 555 WYy +O00H)
soe ”» e 1 l
(i) S50 = "' (e 5 by + G
1 1
—m}ﬂy&)— v Sy +0(hS) (4.111)

From (4.111 iii) we may have

(St S5 =) = 3 (k)35 W00

S Ceab) =S (xn =) = hy{Dy =i By +O(HY) (4.112)
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The error €(x) = y(x)—Sa(x) at any off-nodal point is obtained by substitu-
ting (4.111) in the Taylor series expansion of €(x,+6h), 0 < 8 < 1. We obtain

02(6—1)? 0(6>— 1)(362~-2) A5

4 (4)
24 et 360 Vixa

e(xn+0h) =

+0(h) (4.113)

The error is zero for § = 0 and 1 and also i y(x) is a cubic polynomial so that
its fourth and higher derivatives vanish. From (4.113) we get

92(6—1)2 @)
| e(xn+0h) | orggr{ 2 PV | } 384 |y(x)l (4.114)

Using (4.112) we may write from (4.113) an estimate of the maximum error
inx, < Xx < Xntp @S

|l < 384 max{ld,,l |dety |}, n = 1()N=1  (4.115)

where
1
yO, = (85 0n+) = 54 (xa =Wk +0") = - d-0(h)

Now we use the spline function approximation (4.107) to determine dif-
ference scheme for the differential equation (4.87). Differentiating S, (x) in
[xll—h xn]v we get

o . (X—Xn—1)2__ 11_] _(xn_x)z _h_] Yn= Yn-y
b_1(x) = M, [_"'2"h' 6 +Mn-l 2 + 6 + —T(4.116)

Putting x = Xn_x = Xn—Ah in S4(x) and (4.116), we have
2 2
(i) S(xn-2) = Muy % )t(/\’—l)-i—M,,—hg(l =1 =22 =1)+Apn (1 =A)p,

(i) S'Conn) = L2220 — M, h (1\2—-1—)_M"<_’3.(_;__(1_)‘)z )(4_“7)

h 2 3 2
where 0 < A < 1.
By considering S4 (x) and S'(x) in [xa, Xn+,] and putting x = X3 = X2+ M
we obtain
h? h?
() SaGoar) = Mugs -5 MO =1)+ My g (1= =2~ )y,

. ’ 'n _yn h 1 h 1
(i) Sixmen) = 2220 b, B (20 ) 5 (- 1=

(4.118)
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This root is (3, 3) Padé approximation to e2® (see Table 2.4). The graph of
£, given in Fig. 4.1, has an infinite discontinuity at R = 2.322..., whichis
real positive zero of the denominator( l—-R-l-—i— R2— %R3). Beyond this
point, £ is negative and consequently the difference solution is expected to

have oscillations when R > 2.5,

3,3 [&R

90.0
700

50.0

30.0+

100l (2,2)

1.0 2.0 3.0 4.0

200}
(3,3)

L00} -

600}

Fig. 4.1 Graph of various order Padé approximations to e

Compact implicit difference schemes
- Substituting (4.124) into (4.104) we obtain

( 1—R+—;R3 ) Yne1—2 yu+ ( 1+R——31— R )y,,..l =0 (4.130)

The root £ is given by :
3—R(3—-R?
Three cases are possible for general R:

(i) R < 4/3, ¢ > 1. The diffeence solution (4.127) with (4.131) is mono-
tone increasing, concave up, and properly approximates the true solu-
tion (4.125). ;

(4.131)
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(ii) \/ 3 < R< 2.1038 (R value where numerator of ¢ wvanishes),
0 < £ < 1, The difference solution (4.127) is monotone increasing but
concave down and completely wrong.

(iii) R > 2.1038, —1 > ¢ <« 0. The difference solution is oscillatory.

Compact implicit-block methods

In order to solve the boundary value problem (4.124) with the help of the
implicit compact schemes (4.100) and (4.101) we develop the following 3 X3
block tridiagonal system of equations

(l) Yn41—Yn-1 _ m,.+,+4m,.+m,,_| =0 -

2h 6
o n "2 n+ n— Mn +10Mn+Mn—
(ii) Ynti hzy Ynot _ Mn = L -9 |
Gii) M,—Km, =0 (4.132)

where m, = (y")n and My = (y")n.
The above equations hold for n = 1 (1)N. Alternatively, eliminating M,
and using only s, ma, a block tridiagonal system results from using (4.132i)

and

y—ﬂ-‘-%’ﬁﬂ;‘ - % Mgy +10m+-may) = 0 (4.133)

The boundary values (n = 0, N-+1) are required for m, in(4.133) and for m,
and M, in (4.132). These are obtained by the methods discussed in Chapter 3.
To find the solution of 2X 2 system, we write

Yn (4]
\: :l = gn[ ] , n=0(1) N+1 (4.134)
mu C2

Substituting (4.134) into (4.132 i) and (4.133), we obtain two homogeneous
equations in ¢; and ¢;. A nontrivial solution results if the determinental

equation \
E-DIR-RE+H(6-11RE—(6+11R)E-(2+R)] = 0 (4.135)

holds. For R < 2, there are always three real roots of (4.135), &4, &, &
such that

(> E.<-1, -1 <§<0

A proper analysis of the difference solution will require consideration of the
particular schemes used to approximate the required derivatives at the
boundaries. However, in the range of R values (0 < R < 2/(15)!/2) where
£, < | €~ | no dominant oscillations occur.
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1of

higher order.__.

B "',\ophmn!
L _ - 7 72l
0.5} By
."'. /
/‘\ critical
/

/
/
/
/

i L, A
0 10 20 30
R

Fig. 4.2 Representation of higher order L = R/3, optimal

1 . 1
L =.(coth R_F) and critical L > 1-7 values

DEFINITION 4.3 A matrix A is said to be reducible if and only if it is
similar to a block matrix of the form

A 0
PTAP =
Ay Ay

where A, A,, are square and P is a permutation matrix. In particular, a
tridiagonal matrix A = (ai, ) is irreducible if and only if
an,i.1 0 2<i<n

“and anit) #0 1 <i<<n—1  (4.145)
DEFINITION 4.4 A matrix A = (ay, ;) is called diagonally dominant if

n

Xlasl <layil,1 <i<n (4.146)

i
and strictly diagonally dominant if strict inequality holds in (4.146) for all
i; the matrix is irreducibly diagonally dominant if A is irreducible, diagon--
* ally dominant, and strict inequality holds in (4.146) for at least one i, If by
the notation v > 0 (either for vectors or matrices) we mean that all the ele-
ments are nonnegative, then we can define: g matrix A is monotone if
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Az 2> 0 impliesz 2 0. A direct consequence of the definition is that every
monotone matrix is non singular. 4 fundamental result of the theory is:

THEOREM 4.1 A matrix A is monotone if and only if A1 = 0.
Another important result is the following:

THEOREM 4.2 If a matrix A is irreducibly diagonally dominant and has
nonpositive off-diagonal elements then A is monotone.
Finally we quote for further use:

THEOREM 4.3 If the matrices A and B are monotone and B < A then

A—l < B-!

We recall the concept of a norm of a vector, | x || . The nonnegative quan-
tity Il x Il is a measure of the size or length of a vector satisfying;

G) Ixt>0,forx #0and |0} =0
(i) lexll=|c| Ixl,foran arbitrary complex number ¢
Gil) Ix+yl<Uxl+Nyl _ (4.147)

We shall in most cases use the maximum norm

B x|l = max | x| (4.148)
1<isn .

At this point we must also recall the concept of a matrix norm. In addition
to properties analogous to (4.147) the matrix norm must be consistent with
the vector norm that we are using for any vector x and matrix A

TAXI<UAN Ix1
It is easy to verify that the norm

kJ .
lAll= max ¥, |a,;| (maxrow sum) (4.149)
1€i€n j=1 .

is consistent with max norm || x |l . ,

The exact solution y(x) of (4.48)' satisfies
(= 14+ An)y(xn-1)+(24 Bn) Y(Xa)+(=14-Cn) ¥(%n41)
= Dp=Tn, 1 <n<N ‘ (4.150)
where the t)runcati_on error T, is given by

T, = '112”‘4 YO (€, xney < & < Xny, L SN (4.151)

for Bo=B=0,8=1

and Ty =— 210 Ry, xny S €2 S Xmr, L SH SN (4.152)
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h ’ = ’
where fu = max | ()|

Substituting the value of || T || in Equation (4.164) from Equation (4.167),
we establish the convergence of the sixth order method. In a similar man-
ner, we may prove the convergence of the difference scheme based on the
four-point Lobatto quadrature formula as applied to the mixed boundary value
problem in Section 4.3.4.

4.6 NONLINEAR BOUNDARY VALUE PROBLEM y@) = f(x, y)

We consider two-point boundary value problems involving the fourth
order differential equation

¥y = f(x,y) (4.168)
With the boundary conditions prescribing either
Wa) = 4o, y(b) = By
y(a) = 4,, Y () =B (4.169)
or
Na) = Ao, yb) = By
y'a) =4y y'(b) =B, (4.170)

Here, —o0 < a < x < b < oo, 4y, By, A}, B, A2, B; are finite constants. In
the following we shall assume that y(x) is sufficiently differentiable and that a
unique solution of (4.168) subject to ecither (4.169) or (4.170) exists.

4.6.1 Difference schemes
Consider the identity

Xn+g

y(xp,) = %—{I (Xnp2—1)? [Y'e(t)+y** (2xn—1)] dt

X1

-4 I st =P ()45 Oxn—1)] dt } (4.171)

Xn

If we use the transformations ¢ = x,-+h (14, in the first integral on the right-
hand side and t = x,+h (1+4u)/2 in the second integral, (4.171) changes into

e
Byx) = | (A= { 7 G-+ 47 Gt (1-H10)



DIFFERENCE METHODS 219

As in Section 4.3.1, we replace the integral in (4.172) with the aid of a
suitable quadrature rule and obtain the difference scheme of the form

Byn =ht {Woy:':’ WGV )T W2 GF TR

5 iv iv 1 iv Av
+’._23 Wj[()’:,_.j"l"y,,_....)- T(yn-uzo,- +~"n+11205)] } (4l73)

J
The values Wy = 1, W, = W, = W; = 0 give a difference scheme
Sy, = hyd (4.174)

which is of the order two with local truncation error (1/6) h® V@ ),
Xn_g < € < Xnya If we take Wy =0, W; =0,/ = 3, 4..., we find that the
values W, = 2/3, W, = 1/6 give fourth order difference scheme

h . . .
By = & i R+ (4.175)
"with the local truncation error
S ST 176
T" = 720 h ) (xll)+--- (4 1 )

In Equation (4.173) if W; = 0,j=13, 4..;, we can determine Wy, W), and W>

uniquely so that (4.173) has order six. Thus, the sixth order scheme is
h4
720

with local truncation error

3yn = [474 yir 4 124(p_ + 3%, )= (_,+y7. )l (4.177)

T 1

v = 55 M0 YOGt (4.178)

We also require the difference expressions for the derivatives y'(x)and y"'(x)
at the boundary points xo and xn+,. We define

3 3
(i) tz bx yk+ch“"yo(“°"+h‘ kzodkfk =0
-( =

3 — 3
() 3 beymprtc (=B UEP A T, defiverk =0 (4.179)

where « € {0, 1} and bx, c and dx, are arbitrary parameters to be determi:
ned. Here, we require that the local truncation error in (4.179) to be of the
form 0 (h7**); for then the difference expressions of the boundary conditions
(4.169) and (4.170) together with the difference equation (4.177) give 0(hS)
difference method. Now so that each difference equation (4.179i) and (4.179ii)
is consistent we obtain a system of four equations for the determination of
five parameters bo, by, b2, by and c. If we put bs = 1, then, for « = 0,
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and ¢ = (¢;) is the N-dimensional column vector defined by (4.190). The
truncation errors associated with equations in (4.189) can be obtained as

59

T, = o KM (4.193)
Th = ”!6‘ ’16.M5‘ 2<n < N-1 (4194)
Ty = :—;5—6‘—’(—).16M6 ’ (4.195)

where Mg = max | y© (x) |
n€zgh !

We now use the fourth order difference scheme (4.175) to solve the fourth
order boundary value problem. We note that the scheme (4.175)

4
8y, = ’-'6- O +4yir 4y ), 2 <n < N—1  (4.196)

n— nr
gives us N—2 relations in the N unknowns y;, 1 < i < N. If we make use
of the boundary conditions (4.186), we get two more relations

4 .
I (28yis +245y% +56y% +yi0)  (4.197)

5}’|—4)‘2+']'3 == 2“]—11281'!‘ '3—60

and
yy-2 —4yxn_1 +5yy = 2a,—h?p,
: It . R . .
+ 365 (V-2 560, +245)% +28% (4.198)
Substituting the values of 3%, 0 <n < N+1 in the relations (4.196), (4.197)

and (4.198) the system of equations can be replaced by a single matrix
equation of the form (4.191),

Ay = ¢
where
3 _‘_‘_9_ 4r l 4 —1—- o L
—4+ _’.‘/,y 642 W, —4+ n 1
6 1 3 J2 6 3
1 ., 2 ., |
1 —4+— i 6+ Thf} -4+ hfs 1
A= : ’ '
| 4 2 2 1 4
I —dthYy-z 6+ hfn- 4+ ghy
S — T e ig 4
] l+360 hfn -2 4+45 hfv-1 5+ 72th
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7 h*
(2= g5 1o o2 Brot e 280+ 2058, 4+ St-+20)

—J

i
Jid
’ —a + g‘(gx+4gz+g3)
and ¢ = | :
% hé
! — % +F(g~-z +4gn_1 +gn)

7 4
L(Z— 20 Ifn ) 1,—/12,32+3hT0(g.\'-2 +56gn-1+245gn+28gN +1)

[

The truncation error of the difference equations is given by

241 _
| Tu | SstohMg,n— 1, N
| T | < 0.002183/8M;,2 < n < N—1
where M, = max | y")(x) |
asr<h

The matrix A is a five-band matrix, the nonzero elements appearing only
along the principal diagonals. We can easily extend the method of solution
of a tridiagonal system to a five-band system.

4.6.3 Solution of five-band system
The above system of equations can be written as

e, o E, [ 1T r °‘|. ]

{ B C; D E, 2 ] “

As By C; D; E; = (4.199)
An-1 Bn—i Cn-1 Dy_y YN-1 L

L Ay Bvo Cv Jlyw J L e

where 4; B:, C;, D;, E; and «; are the known quantities. As in Section 4.3.3,
we assume the following recurrence relations

Yn = hn—@n YPrp 1 =~ YaYur2, 0 < < N (4.200)
We use (4.200) to find ya_, and y,—; and substitute them in the equation
A,.y,.-z-i-Bnyn_l+Cnyn+Dn_vn+1'+En_}‘n+z = “,‘,, 2<n<<N=2 (4.201)
and by comparing it with (4.200), we get
hn = (Ol;—A,.h,._z—-S,,/i,._,)/w;
Wy = (Dn—an‘)’n—l)/‘”:.
Yn = Ejlw,
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In fact, (4.208) can be reduced to (4.209) if we assume B is nonsingular and
A = B7'J. Thus, we have reduced (4.205) and (4.206) to the eigenvalue
problem (4.209). The eigenvalues and eigenvectors of A determined from °
(4.209) will give approximations to the nontrivial solution of (4.205). We
now briefly give some elementary properties of the eigenvalues and eigen-
vectors of the matrices.

4.7.1 Eigenvalues and eigenvectors
The equations represented by (4.209) are a set of N homogeneous linear
equations in N unknowns and such a system of equations will be consistent
if and only if
det[A—Al] = 0 (4.210)
The expansion of this determinant will lead to a polynomial equation of
degree < N in A, The roots of this are called eigenvalues of matrix A, and
the equation is called the characteristic equation of the matrix. The eigenva-
lues may be distinct or repeated, real or complex. If all the eigenvalues are
distinct, there is a nontrivial solution y, (eigenvector) corresponding to each
eigenvalue A, such that
Ay, =AYy 4.211)
The eigenvector y, is arbitrary to the extent of an indeterminate multiplier.
We usually scale the eigenvectors so that they have unit length. This is called
normalizing the eigenvector. If we premultiply (4.211) by the transpose y7 of
yr, We get

vr Ay,

A YTy (4.212)
which gives an expression for the eigenvalues in terms of the eigenvectors.
For an arbitrary vector y, (4.212) is called the Rayleigh quotient
yrAy

'y

Let us denote by AT the transpose of matrix A. Then (AT —AI) is the
transpose of (A —AlI) and therefore has the same determinant as (4.210). It
follows that the characteristic equation and the set of eigenvalues of A7 are
the same as those of A. However, the eigenvectors are generally different
inless A is a symmetric matrix. We can easily prove that

(i) the eigenvalues of a real symmetric matrix are real,
(i) the eigenvectors of a real symmetric matrix associated with different
eigenvalues are orthogonal.

In physical problems we rarely need to determine the whole set of eigen-
salues of (4.209). We are generally interested in the largest or smallest eigen-
value. We assume that the eigenvalues of A are real and distinct and we can
arrange these as ’

(4.213)

A =

[Acl > 2] > v (4.214)
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Furthermore, let us denote the complete set of eigenvectors of A by
Y1, Y2, .-, Y~. We can easily determine the largest or smallest eigenvalue
and the corresponding eigenvector.

4.7.2 The iteration method
We take an arbitrary initial vector y© which we express as a linear com-
bination of the eigenvectors
¥y = ¢,y;+cayat... +onyn (4.215)
Repeated applications of A give
yo = Ay®D = g% yO

¢ N A \F
= 1[01Y1+ch(-x") y:] (4.216)

In view of (4.214) and for sufficiently large values of k, the vector
N k
Cy YI+2 Cr (—:'" ) yr
rm2 1

converges to c;y;, which is the eigenvector corresponding to the eigenvalue
). The ratio of y*+" to y*® will tend to A,, that is to say, the ratio of the
corresponding elements of y**! and y® will tend to A;. This algorithm is
called the power-method. From (4.216) the convergence is given by the fac-
tor (Ay/A)). In principle this enables us to determine A, and the associated y,
to any desired accuracy. Unless Ay/A; is much less than unity, this method is
not very efficient. In the case of symmetric matrices, we can obtain better
estimates for A; if we use (4.216) to construct the Rayleigh quotient (4.213).
We obtain
(Y®)T (y™)
® = P D)

For real symmetric matrices, the eigenvectors are orthogonal. Thus we have
N N A\
T (v(®)) = 232k — )\ =
(y ) (y ) Ecrav '\l 'E-'é( Al)
RNT (D) = S0 2AZT — 2Bt B A\t
(YR (yD) = I et = %a(x)
and hence
N ,\' 2k
a+5 ()
re1 1
N -1
A% )
r—1 1

The convergence to A, is given by a factor (A2/A,)?* which is twice as fast as

ARzAl

~ given by (4.216).

For computation the procedure just described can be formulated in the
following way. We use the formula

y*+ = Ay® k =0, 1, 2, ... T (4.217)
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Thus, the diagonal clements of B~! are positive. We now determine the follow-
ing two sums:

J-1 J — pol j=—1
O F, 10l = L B 1
N-t . y N-1i
@) 3 | Bm = V% %_;—)' S, s (4.225)

Putting r =—« and s = — 8, we obtain
O F, |57 | = =)~ (B0
and .
(ii) :f};; | rm—ps™ | = %(a’—a’" - —;—[«J“(l —adN=1-D) 4 gN~1(] —q2)]

(4.226)

Since the expressions in square brackets in (4.226) are positive, we may write
(4.226) as

—1
33] | sm—rm | < % | = |, j=21N~1

M=
and
N-1 1
|r—ps™ | < — | ri—=ps'|, j=1(1)N=-2 (4.227)
m=]+1 8

Substituting from (4.227) into (4.225) and with bj; as given by (4.224), we
obtain

—1
O F 15l <35 j=208-1

and
Nt
) % |5l < 5B J=10N-2 (4.228)
From (4.228), we have
N-1 1
m}_._"..l | bim | < —4-511, Jj=11)N~-1
myj

which shows that the matrix B™ is strictly diagonally dominant. We know
that the product of two positive definite matrices is a positive definite matrix
if and only if the matrices commute. Now, B is positive definite, the matrix
B~ is positive definite, and it is easily verified that B~! and J commute. Thus,
the matrix B™! J is positive definite. Further, r(x) = 0 on [a, 5], therefore
R 2 0 and hence the matrix B™\J+A?R is symmetric and positive definite.
Thus, the Numerov method gives real and positive approximations for an
cigenvalue A of (4.219). The eigenvalue A, using the Numerov method is
given by

(B™'J+A2 R)Y—ANQY = B-IT (4.229)
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where
Y = [y(xl)y(xl) .o y(xN—l)]T9
T = [T\T; -.- Tv—1]F

=K e h® = 1(1)N—-1 4.23
T = 245 YanTOH), n = 1N- (4.230)

We now state the following result.

THEOREM (Keller) 4.6 For each eigenvalue A of (4.219) and corresponding
normalized eigenvector Y(x), there exists an eigenvalue A24 of Q™}(B~1J
=+ A2 R) such that

I=(Y) I

- -1 -1
A=Al <@l 1B TY 0

(4.231)
where 2t = T. '

From this result we obtain the error estimates in the maximum norm
le(Y) Il = . We use the normalization

[ g ar =1
We have
: Nt h
@AY 12 =[5 B+ £ (5H0+3e)

- I: Y3(x) dx+ I: y:(x) dx]

/] h2 ,

= I (%) dx+75 Y'(c), cE€[a, b)
1 hm

= F+1_2‘}’ (c)

where g* = max g(x).
asz€b
N1
Gi) hllzl2= ”,§ 2<(b-a)lT 12

(i) 17 Il = 0(h%)
(iv) 1B = :

2
® QM =—
qx
where
gy = min g(x) (4.232)
a<z<d

Substituting from (4.232) we may write (4.231) as
[ A=A ] < O(h)* (4.233)
Thus, we obtain that as 4 — 0 any fixed eigenvalue A of (4.219) is approxi-

mated by some eigenvalue of the difference equation (4.220) with an erros
of 0(h4).
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TABLE 4.7 CoMPARISON OF ERRORS IN NUMERICAL METHODS FOR THE
MiXEp BOUNDARY VALUE PROBLEM
Y'—=y+dxe* =0, y(0) = 0) = 1, y’(1)+ (1) = —e WITH h = 2~*

Approximation 1 Approximation 11
m Second Fourth Lobatto Gauss Lobatto Gauss
order order method method method method

method method

5

0.807—01 0.364-—03 0.379—-06 0.309—06 0.174—05  0.174—05
0.203-01 0.232—04 0.600—08  0.482—08  0.304—07 0.304—07
0.509—02 0.146~05 0.941~10 0.756—-10  0.502—09  0.501-09
0.127—02 0.913—07 0.147—11 0.118—11 0.806—11 0.806—11
0.319—-03 0.571—08 0.238—-13 0.183—13 0.127—-12  0.128—-12
0.797—04 0.357—09 0.567—15 0.243-15 0.177—14  0'196-—-14
0.199-04 0.212-10 0.795—16 0.103—16  0.455—16  0.247-16

W0 3 A WneEWN

TABLE 4.8 CoMPARISON OF ERROR IN SIXTH ORDER METHOD FOR THE NONLINEAR
BOUNDARY VALUE PROBLEMS WITH AND WITHOUT MIXED BOUNDARY
CONDITIONS WITH h = 2-"

i 1 3 "o _3_
y -—2—(1+x+y) y 3 »
; 1 .
m YO —y0) = ~— ¥0) =4 Y'(0)—y(0) = —12
YO)=y1)=0 yM+y) =1 =1 Y+p(1) =0

3 0.270—06 0.629—06 0.488—05 0.930—05
4 0.435—08 0.125—07 0.797—07 0.187—-06
5 0.718—10 0.290—09 0.126—08 0.339-08
6

0.432-11 0.651-10 0.204—10 0.628—10

These results are quite reasonable since in this case y(x) < 108 for x > 9.
Thus, we find that the position of the finite points depends on € and to some
extent on 4 also.

The nonlinear differential equations with or without mixed boundary
conditions have been solved with A = 2™, 3 < m < 6. The results obtained
with the four-point Lobatto quadrature with Approximation 11 are listed in
Table 4.8. We find that the sixth order methods with Approximation 11 are
particularly useful for nonlinear differential equations with or without mixed
boundary conditions since we need to solve a fewer number of nonlinear
equations to get higher accurate results.

Finally, we arrive at the following conclusions: :

(i) The sixth order methods with 4Approximation 11 are applicable to linear
and nonlinear differential equations with or without mixed boundary
conditions.

(ii) The numerical results show that the sixth order method based on four-
point Lobatto quadrature and Approximation 11 is highly desirable for both
linear and nonlinear boundary value problems.
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4.9 NONUNIFORM GRID METHODS FOR THE SECOND ORDER
BOUNDARY VALUE PROBLEMS

Leta = xo < X; < Xz,-++, Xn—1 < X~ = b be a subdivision of an inter-
val [a, b], where hy = x;—x;-1, j = 1 (1) N. We now obtain the difference
schemes for the second order differential equations which when used to solve
the two point boundary value problem will lead to a tridiagonal system.

4.9.1 Nonlinear boundary value problems y'’ = f(x, y)

Let us approximate the differential equation y'* = f(x, y) by the difference
scheme of the form

29n— Cinyami—Conynir+Hass (Bonfami+ Binfat Banfar1) = 0 (4.234)

where f and y, represent the approximate values of f(xa, y(x»)) and ¥(xn),

respectively. The C’s and B’s are unknowns to be determined. We now write

the difference operator L[y(x), k] associated with the equation (4.234) as
L{y(x), ha] = 2y(xll)"CIAY(xn"'hn)“CMY(xn+hn+l)+h:+l [Bony"’ (xn—hn)

+Bl"y”(xﬂ)',f'any”(Xn+hn+1)] (4235)

We expand the various y’s on the right-hand side of (4.235) in the Taylor
series about x» and equate the coefficients of AL yf , (v = 0 (1) 4) to zero.

(x»)
We have
2—C|n"C2n =0
Cin—9C;n =0

2
~ 3-Ciu— 5 Cont o (Bort Burt B) = 0
L (Cu= 0 Cp) =% Byt B = 0
— 5 Curk* C) + 5 (2Bowto* Byn) = 0 (4.236)

and

LI00), b = [ 5 (Cunm o Co oty (0 Burk o B) | B33y

. (4.237)
where hnyy = © An.
Solving (4.236) for C’s and B’s we obtain
20 2
Cin = oy Cn = %9
_ 14o—a? _ @*+40i+40+1
B = tatlo) B = —6a1 (1 10)
_ o*4e—1
By, = T (o) (4.238)
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The value o > 1 gives more mesh points at small values of x while ¢ < 1|
gives more mesh points at larger values of x. In most of the boundary value
problems it is possible to know in advance the location of the boundary

In the boundary value problem (4.244i) the boundary layer exists near
the right hand boundary x = 1. We choose o = 0.6 and this gives more
mesh points near x = 1. For N=38, ¢ = 1072, the solution values are
shown in Figure 4.3(a).

The boundary layer in (4.244 ii) is near the point x =—1. We choose
o = 1.2 and this will 8ive more mesh points near the left hand boundary.
For N = 100, ¢ = 10-¢ the solution values are shown in Figure 4.3(b).

We solve the boundary valye problem (4.244 iii) over the interval [- 5, 5],
The boundary layer exists near the origin. We choose a symmetric mesh

interval [—5, 5] are 2N+1. For N = 8, e = 1/24, the resulting system of

- 'equations are solved with the Newton-Raphson iteration method. The solu.

tion values are shown in Figure 4.3(c).

We may conclude that the variable mesh method (4.243) is well suited
for solving boundary layer problems. A priori knowledge of the location of
he boundary layer js very helpful in producing accurate results with rela-

1.0

y(x)

Fig. 4.3(a) Solution of ¢y” «= j’, NO0) = 1, (1) = 0, ¢ = 10-*

exact, ...... computed (¢ = 0.61),
~—=—— computed (¢ = 1.0)

|
—_—
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10}
yix)
S
‘ . .4 . . ° Y [ ] L ] [ ] L]
[ hd * *
Lo b
-1.0 0 x o

Fig. 4.3(b) Solution of ey’ +2y’+y = =3, y(—1) = 1, (1) = 2, N = 100, € = 10-*
exact, ... computed (¢ = 1.0), — ——computed (¢ = 1.2)

y(x)T
<"\ 110
\

L A N -

- : ) P b4
5.0 0 ~ X 5.0

Fig. 4.3(c) Solution of €y’ = (y—=1/2)y’, (— @) = 1,y () =0, N = 8, ¢ = 124
exact, ... computed (¢ = 1.1), —— — computed (c = 1.0)_

239
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8. Determine the constants in the following relations
h8% = D%(14ad2+b84)+ 0(h®)
hD = pd+a,LE™'+(hD)ay+awd+ asd%)+0(17)
(BIT 8(1968), 59)
9. Find the coefficients a and b in the operator formula
824-a8* = h2DY(14-b82)+-0(/i8) (BIT 8(1968), 138)
10. The differential equation y"'+x2(y+1) = 0 is given with boundary
values y = 0 for x = 1. Find approximate values of y(0) and
¥(1/2) using the second and fourth order difference schemes, with
h =1)2, (BIT 7(1967), 81)
11. Find difference approximations for the solution ¥(x) of the boundary
value problem
y'+8sin?rx y = 0, x€I0, 1]
¥0) = y(1) =1
with step length & = 0.25, using second and fourth order methods.
Also find an approximate value for y’(0). (BIT 8(1968), 246)
12. The difference scheme
7 ” 5 ?” " 2
82yn = hz [ﬁ y“+ 2-4- (y"_'-l—yn,_')]’ r2 = —5—-
with Approximation 1 is used to replace the boundary value problem
V' = f(x)y(x)+g(x)
ya) =4, y(b) =B
by a system of linear equations
(- 14+A4,) yn—l+(2+Bn)}’n+(“l+Cn) Yar1 = Dn, 1 K n < N—-1
Vo= A,yn =B
Determine A,, Bs, C» and D,. Show that the principal part of the
truncation error is given by
19 38—94/10 (V/10-2) . ;
1512000 31 ~gea00 MMetT 3500 Jur MS]”
where M, = max |y, fu = max | Jx) |
<.Z<b aszsh
and fu = max |f'(x)]
[ 1414
13. - The system of equations

("'1+Au) yli—l+(2+Bn) yn+(°‘l+Cn) Vs = Dyn1<n<N
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where

= Ilzﬁoﬁ_]—l’h YOEI—'I-P"- [ l+ h2f'”-1+15 h f”___

—0Ou- 1[ l—éoﬁ:— ]_Pn+l[ l—ﬁfn-l],

Bn = hzﬂ]ﬁl"l‘h‘yan“— Ilzﬁ(P"_l —Pn.H)— &) h’f,:Qn,
= B, fur1 +h*y2Fne 1+ Pny [ 1-= fn+l]+Ql[ l—-2= fnﬂ]

+Pn+l[1+]5hﬁl+l lshfn-}.]
Dn == h¥Bogu-1+Bign+Bagnt)) = h* (Gn-1+71Gat72 Gat1)
2
+ Py %(l3g,.-l+ 16gn+gn+l)+'l'2§ " g;—!]

On [gﬁ(gﬂ-l—gn-l-l)_ 120’1 gn]
h? 2 4.
= Puyy i‘s'(gn—l+163n+l3gn+l)—’i§ h 8nt1 |

=1

Py = h’yof'( 1+’1’—ﬁ.)
A\ "TT5

0n = tnf 145 h’f.)—l

ﬁ = f(xi)’ & = g(xl)) Fl = f;'+f‘2
G = figitg

(Bor Bry BD) = 1—512—0 (660, 13800, 660)

which may also be written as
My=D
represents difference replacement of the problem
¥ = f(x)y(x)+g(x)
y(0) = 4,y(1) = B
(a) Show that M > J for f(x) = 0 on [a, b]
(b) Find out the condition for which M is irreducible
(c) Determine the error equation
. ME=T
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21. The difference equations

22,

0 (1+8+ 35+ it ot - 1+'l—’-22-fz )a
—-na-E 4y,
@) (=145 7 )y,._1+(2+ 12 o) ot
(-14+5 s )y =02 <n < N1,
i) (=14 Bt Jowor + (1404 h2ﬁv+” (v=14) ) o

= hB+ BfN.
for the boundary value problem

¥ = f(x)y, x€[0, 1]
Y'(0)—y(0) = 4
y()+¥(1) = B
may be written in matrix form
My =D
(a) Determine the condition for which M is irreducible

(b) Find the error equation ME = T
(c) Show that

1 * 3 4
IET <@(M,+ -§-M6)h
where Ms = max | yS(x) |
. 0<z<h

Ms= max |y9x)]|

KN-1)<z<€l
M; = max (Ms, Ms)
and Mg = max |yO(x)|.
o<zl

Show that the differential equation
y'—y =2x, x€l0, 1}
may be replaced by the finite difference equations

(=) (o3 )

+(1= g5 1) 3o = 2xut Cpa
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23.

24,

25.

_ 1 s
where C = 346 864...

The boundary conditions are
y(0) =0
y(H+y'(1) =1
Find the finit difference approximation to the boundary condition at
x =1 as accurately as that of the approximation to the differential

“equation; then solve the equation with 4 = .25.

Determine a difference approximation of the problem
[(1+x2yT —y = x2+1
W=D =1)=0
Find approximate value of y(0) using the steps # = 1 and h = 0.5

and also perform Richardson’s extrapolation. (BIT 7(1967), 338)
Consider the boundary value problem

(p(x)y")' =f(x)y = g(x), xEla, b]
y'(@—cya) = 4
Y (b)+dy(b) = B
Using the difference equations

= Ph=112Yk-1H(Prti 2 Pror2+ Bf)yk—prs i1 2yky
= —h%k, 0 < k < N+1

as the difference replacement of the differential equation together with
the following difference replacement for the boundary conditions:
Vi=Y-t_ . _ 4 YN+2=IN —
2/1 Yo A’ 27 +d}’N+1 B
(i) write these difference equations as a system of order N+2;
(i) if f(x) > 0 and the solution y(x) is sufficiently smooth in an open
interval containing [a, b], show that for sufficiently small A

| ye=y(xe) | <O(h?),0 < k < N+1

The solution of the two-point boundary value problem

¥ = f(x, y), xEla, b]
where y(a) and () are given, is usually found by use of a recurrence
relation of the form
_yn-l+2}’n—})n+1+hzﬁt =0,1<n<N-1
Neglecting round-off errors, show that the bound for the truncation

errors Tom is given by

) N-1
| To | < liz WS o
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where j,» are the elements of the inverse of N—1X N~ 1 matrix

r 2 -1 i
-1 2 -1
. -1 ' 2 ' -1
L -1 2 ]
26. The solution of the mixed boundary value probem
Y =[x, ),

y'(a)—cyla) = 4,
y'(b)+dy(b) = B
is obtained by solving the system of nonlinear equations

, h?
[H-Iw(l + noh ):] Y1=)2
o

h? h? _
+T§ (5/1+/)+hA (1+ i‘z‘% )+‘1—2 P =0,

2
=Yt 2yn=Yut1t 13 (for+10fa+7ne) = 0,
2eno N1,

2
S [l+hd(l+ s qN)] o
K2 A2 W
+ l_i(fN—-l'l'st)_hB(l‘*‘ '1_2qN)"‘ 7Py = 0

where Fo = f(xm, ym),  Pm = f(Xm, ym)

and qm = fy(xm: ym)
Find the error equation ME = T.

27. The function y(x) is determined through
1o 1
y _xzy = 09 y(O) = "2—’

y'(0) =0, (1) =1
Find y(1/2) with the help of the difference method. Use i = 1/4.
28. Solve the boundary value problem
¥ =1,30) = y'©0) =y =y1)=0
with the help of the second order difference method with i = .23.
Apply the elimination method for solving the system of equations.

29. Solve the fourth order differential equation
y‘v_ylpl+y —_ xz
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30.

31.

32.

33.

subject to the boundary conditions
y(0) =10, y(0)=0
y(1)=12,y(1)=10
with h = .2,
Find the error equation ME = T of the system of linear equations
(4.189).
Let M, be the five band N+ 1XN+1 matrix defined by

r s —4 1 )
—4 6 —4 1
1 -4 6 -4 1
1 -4 6 -4 1
1 -4 6 —4
i 1 -4 5

(a) Determine M;' = (m;;) explicitly and show that it is a symmetric
and monotone matrix
(b) Prove that
(b—a)*
< 2R
where Mg = max | y(x) |
asz<bh
Obtain approximate values of the smallest characteristic number 4,
for the problem
y'+A(1+xYy = 0, p(£1) = 0
Use the second order method with N successively taken as N = 1 and
2, h = 1/N.
Consider the homogeneous boundary value problem
y'+A4y =0,
¥W0)=y1)=0
(a) Show that the application of the fourth order Numerov method
leads to the system

A
J——1 |y=0
1+ iz
where A = h24.

(b) The approximations to the eigenvalues by the second and

the fourth order methods are given by 722" (1 —cos nwh) and
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34.

35.
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12 1—cos nmh

h? 54-cos nmh’
(c) Noticing that 4, = n2n?, show that the relative error

An_/l_z)‘n
Au

for the second and the fourth order methods is given by A,h%/12

and A24/240, respectively when terms of higher order in / are

neglected.
The sixth order difference scheme based on the four-point Lobatto
quadrature rule with the Approximation 1is applied to the problem
»'+Ay = 0, y(0) = y(1) = 0. Establish:
(a) that the system of equations is obtained as

A
(- &)
J___@__I

A A2
=151 3%

1 < n < Nrespectively, where i = 1/(N+1).

where A = 2 A,

(b) the approximation of the egienvalue is given by
(4—cos nmh)A2—12(1342 cos nmh)A+360(1 —cos mrh) 0
(c) the relative error is found as

A= A2 _ 191
An 302400
Apply the second and fourth order difference methods to the problem
yi+dy =0
¥'(0) = ¥(0), y(1) = 0
Write the characteristic equation in the form
| A=2AB | = 0. Find A and B, where i1 = 1/N.

s BS4-0(h%)



